5 research outputs found

    Mechanism of Ca<sup>2+</sup>/calmodulin-dependent kinase II regulation of AMPA receptor gating

    No full text
    The function, trafficking and synaptic signalling of AMPA receptors are tightly regulated by phosphorylation. CaMKII phosphorylates the GluA1 AMPA subunit at Ser831 to increase single channel conductance. We show for the first time that CaMKII increases the conductance of native heteromeric AMPA receptors in mouse hippocampal neurons via phosphorylation of Ser831. In addition, co-expression of TARPs with recombinant receptors is required for phosphoSer831 to increase conductance of heteromeric GluA1/GluA2 receptors. Finally, phosphorylation of Ser831 increases the efficiency with which each subunit can activate, independent of agonist efficacy, thereby increasing the likelihood that more receptor subunits will be simultaneously activated during gating. This underlies the observation that phosphoSer831 increases the frequency of openings to larger conductance levels rather than altering unitary conductance. Together, these findings suggest that CaMKII phosphorylation of GluA1-Ser831 decreases the activation energy for an intrasubunit conformational change that regulates the conductance of the receptor when the channel pore opens

    Intracellular zinc irritates TRPA1

    No full text

    Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons

    No full text
    Abstract N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a +/− and Grin2a −/− mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a +/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a +/− mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a −/− mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients

    Tonic activation of group I mGluRs modulates inhibitory synaptic strength by regulating KCC2 activity

    No full text
    The furosemide-sensitive potassium–chloride cotransporter (KCC2) plays an important role in establishing the intracellular chloride concentration in many neurons within the central nervous system. Consequently, modulation of KCC2 function will regulate the reversal potential for synaptic GABAergic inputs, thus setting the strength of inhibitory transmission. We show that tonic activation of group I metabotropic glutamate receptors (mGluR1s) regulates inhibitory synaptic strength via modulation of KCC2 function in pyramidal neurons of the hippocampal CA3 area. Specifically, group I mGluRs signal via activation of a protein kinase C-dependent pathway to alter KCC2 activity, thereby altering the intracellular chloride concentration, and thus inhibitory synaptic input. This interaction between the glutamatergic and chloride transport systems highlights a novel homeostatic mechanism whereby ambient glutamate levels directly regulate the inhibitory synaptic tone by setting the activity level of KCC2. Thus, mGluRs are poised to play a pivotal role in providing a direct interplay between the excitatory and inhibitory systems in the hippocampus
    corecore